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Abstract. We have studied a spatially extended snowdrift game, in which the players are located on the
sites of two-dimensional square lattices and repeatedly have to choose one of the two strategies, either
cooperation (C) or defection (D). A player interacts with its nearest neighbors only, and aims at playing a
strategy which maximizes its instant pay-off, assuming that the neighboring agents retain their strategies. If
a player is not content with its current strategy, it will change it to the opposite one with probability p next
round. Here we show through simulations and analytical approach that these rules result in cooperation
levels, which differ to large extent from those obtained using the replicator dynamics.

PACS. 02.50.Le Decision theory and game theory – 87.23.Kg Dynamics of evolution – 89.75.Kd Patterns

1 Introduction

Understanding the emergence and persistence of coop-
eration is one of the central problems in evolutionary
biology and socioeconomics [1,2]. In investigating this
problem the standard framework utilized is evolutionary
game theory [2–4]. Especially two models, the Prisoner’s
Dilemma [5–7] and its variation, the snowdrift game [3,8],
have attracted most attention. In both games, the play-
ers can either cooperate for common good, or defect and
exploit other players in attempt to gain benefits individu-
ally. In the Prisoner’s Dilemma, the precondition is that it
pays off to be non-cooperative. Because of this, defection
is the only evolutionarily stable strategy (ESS) in popula-
tions which are fully mixed, i.e. where each player interacts
with any other player [9]. However, several models which
are extensions of the Prisoner’s Dilemma have proved to
sustain cooperation. These models include those in which
the players are assumed to have memory of the previous
interactions [10], or characteristics that allow cooperators
and defectors to distinguish each other [11], or players are
spatially distributed [12–14].

A typical spatial game is such where player-player in-
teractions only take place within restricted neighborhoods
on regular lattices [14–17] or on complex networks [18].
These games have been found to generate highly complex
behavior and enable the persistence of cooperation. Re-
garding the latter, the opposite was recently seen in the
case of the snowdrift game played on a two-dimensional
lattice [12], where the spatial structure resulted in de-
creased cooperator densities compared to the fully mixed
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“mean-field” case. This result was surprising, as interme-
diate levels of cooperation persist in unstructured snow-
drift games, and the common belief has been that spa-
tial structure is usually beneficial for sustained levels of
cooperation.

In these studies the viewpoint has largely been that of
biological evolution, as represented by the so-called repli-
cator dynamics [4,19,20], where the fraction of players
who use high-payoff-strategies grow (stochastically) in the
population proportionally to the payoffs. This mechanism
can be viewed as depicting Darwinian evolution, where the
fittest have the largest chance of survival and reproduc-
tion. Overall, the factors influencing the outcomes of these
spatially structured games are (i) the rules determining
the payoffs (e.g. Ref. [21]), (ii) the topology of the spatial
structure (e.g. Ref. [17]), and (iii) the rules determining
the evolution of each player’s strategy (e.g. Ref. [22,23]).
We have studied the effect of changing the strategy evo-
lution rules (iii) in the two-dimensional snowdrift game
similar to that discussed in reference [12]. In our version,
the rules have been defined in such a way that changes in
the players’ strategies represent player decisions instead
of different strategy genotypes in the next evolutionary
generation of players. Thus, the time scale of the popu-
lation dynamics in our model can be viewed to be much
shorter than evolutionary time scales. Instead of utilizing
the evolution-inspired replicator dynamics, we have en-
dowed the players with primitive “intelligence” in the form
of local decision-making rules determining their strate-
gies. We show with simulations and analytic approach that
these rules result in cooperation levels which differ largely
from those obtained using the replicator dynamics.
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In this study we will concentrate on an adaptive snow-
drift game, with agents interacting with their nearest
neighbor agents on a two-dimensional square lattice. In
what follows we first describe our spatial snowdrift model
and then analyze its equilibrium states. Next we present
our simulation results and finally draw some conclusions.

2 Spatial snowdrift model

The snowdrift model1 can be illustrated with a situation
in which two cars are caught in a blizzard and there is a
snowdrift blocking their way. The cars are equipped with
shovels, and the drivers have two choices: either start shov-
eling the road open or remain in the car. If the road is
cleared, both drivers gain the benefit b of getting home.
On the other hand, clearing the road requires some work,
and cost c can be assigned to it (b > c > 0). If both
drivers are cooperative and willing to shovel, this work-
load is shared between them, and both of them gain total
benefit of R = c−b/2. If both choose to defect, i.e. remain
in their cars, neither one gets home and thus both obtain
zero benefit P = 0. If only one of the drivers shovels, both
get home, but the defector avoids the cost and gains ben-
efit T = b, whereas the cooperator’s benefit is reduced by
the workload, i.e. S = b − c.

The above described situation can be presented with
the bi-matrix [24] (Tab. 1), where

T > R > S > P. (1)

In case of the so called one-shot game, each player has two
available strategies, namely defect (D) or cooperate (C).
The players choose their strategies simultaneously, and
their individual payoffs are given by the appropriate cell
of the bi-matrix. By convention, the payoff to the so-called
row player is the first payoff given, followed by the payoff of
the column player. Thus, if for example player 1 chooses D
and player 2 chooses C, then player 1 receives the payoff T
and player 2 the payoff S.

The best action depends on the action of the co-player
such that defect if the other player cooperates and coop-
erate if the other defects. A simple analysis shows that
the game does not have stable evolutionary strategy [19],
if the agents use only pure strategies, i.e., they can choose
either to cooperate or to defect with probability one, but
they are not allowed to use a strategy which mixes either
of these actions with some probability q ∈ (0, 1). This
leads to stable existence of cooperators and defectors in
well-mixed populations [12].

In order to study the effect of spatial structure on
the snowdrift game, we set the players on a regular two-
dimensional square lattice consisting of m cells. We adopt
the notation of reference [25] and identify each cell by an
index i = 1, . . . , m which also refers to its spatial posi-
tion. Each cell, representing a player, is characterized by
its strategy si, which can be either to cooperate (si = 1)
or to defect (si = 0). The spatio-temporal distribution of

1 Commonly known as hawk-dove or chicken game also.

Table 1. Snowdrift game. Player 1 chooses an action from the
rows and player 2 from the columns. By convention, the payoff
to the row player is the first payoff given, followed by the payoff
of the column player.

D C

D P, P T, S

C S, T R, R

the players is then described by S = (s1, . . . , sm) which
is an element of a 2m dimensional hypercube. Then ev-
ery player – henceforth called an agent – interacts with
their n nearest neighbors. We use either the Moore neigh-
borhood in which case each agent has n = 8 neighbors, in
N,NE,E,SE,S,SW,W and NW, or the von Neumann neigh-
borhood in which case each agent has n = 4 neighbors, in
N,E,S and W compass directions [26]. We require that an
agent plays simultaneously with all its n neighbors, and
define the payoffs for this (n+1)−player game such that
an agent i who interacts with ni

c cooperators and ni
d de-

fectors, ni
c + ni

d = n, gains a benefit of

ui(si = 0) = ni
cT + ni

dP (2)

ui(si = 1) = ni
cR + ni

dS, (3)

from defecting or cooperating, respectively.
For determining their strategies, the agents are en-

dowed with primitive decision-making capabilities. The
agents retain no memory of the past, and are not able to
predict how the strategies of the neighboring agents will
change. Every agent simply assumes that the strategies
of other agents within its neighborhood remain fixed, and
chooses an action that maximizes its own payoff. In this
sense the agents are myopic. The payoff is maximized, if
an agent (a) defects when ui(0) > ui(1), and (b) cooper-
ates when ui(1) > ui(0). If (c) ui(0) = ui(1) the situation
is indifferent. Using equations (2) and (3) we can connect
the preferable choice of an agent and the payoffs of the
game. Let us denote

1
r

= 1 +
S − P

T − R
. (4)

Then, if

ni
c

n
> 1 − r defecting is profitable, or if (5)

ni
c

n
< 1 − r cooperating is profitable, or if (6)

ni
c

n
= 1 − r choices are indifferent. (7)

Thus, for each individual agent, the ratio r determines
a following decision-boundary

θ = n(1 − r), (8)

which depends on the neighborhood size n and the “temp-
tation” parameter r. Because r is determined only by the
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differences T −R and S − P , we can fix two of the payoff
values, say R = 1 and P = 0. Based on the above, we
define the following rules for the agents:

1. If an agent i plays at time t a strategy si(t) ∈ {0, 1}
for which ui(si) ≥ ui(1 − si), then at time t + 1 the
agent plays si(t + 1) = si(t).

2. If an agent i plays at time t a strategy si(t) ∈ {0, 1}
for which ui(si) < ui(1 − si), then at time t + 1 the
agent plays si(t+1) = 1−si(t) with probability p, and
si(t + 1) = si(t) with probability 1 − p.

Hence, the strategy evolution of an individual agent is
determined by the current strategies of the other agents
within its neighborhood, with the parameter p acting as
a “regulator” which moderates the rate of changes.

3 Equilibrium states

A spatial game is in stable state or equilibrium if retain-
ing the current strategy is beneficial for all the agents [4].
There can be numerous equilibrium configurations, de-
pending on the temptation parameter r, geometry and
size of the n-neighborhood, and the size and boundary
conditions of the lattice upon which the game is played.
An aggregate quantity of particular interest is the frac-
tion of cooperators Fc in the whole population (or, equiv-
alently, that of the defectors Fd). Below, we derive limits
for Fc, first in a “mean-field” picture based cooperator
densities within neighborhoods and then by investigating
local neighborhood configurations.

3.1 Mean-field limits for cooperator density

Without detailed knowledge of local equilibrium configu-
rations we can already derive some limits for the fraction
of cooperators in equilibrium. Let us consider a square
lattice with m = L × L cells with periodic boundary con-
ditions, where L is the linear size of the lattice, and as-
sume that k cells are occupied by cooperators. We denote
by aj the number of those agents who have j cooperators
each in their n-neighborhood, excluding the agents them-
selves, and denote the local density of cooperators in such
neighborhoods by fc = j/n. Hence, the total amount of
cooperators k can be written in terms of the densities as
follows

k =
n∑

j=0

ajfc =
n∑

j=0

aj
j

n
. (9)

From equations (5–7) we can infer that a cooperator
will retain its current strategy, if it has at most c coop-
erators in its n-neighborhood, where c is the integer part
of θ = n(1 − r). Similarly, a defector will remain a defec-
tor if it has more than c cooperators in its neighborhood.
Thus, in equilibrium, all agents having j ≤ c coopera-
tors in their neighborhood are likewise cooperators, and
thus

∑c
j=0 aj = k. We denote by

〈
fc|c

〉
= 1

k

∑c
j=0 aj

j
n

the average density of cooperators as the nearest neigh-
bors of cooperators. Similarly,

〈
fc|d

〉
denotes the average

0

1

1−r

1−r 1
c|c

c|d

k<f   > + (m−k)<f   >c|c

<f   >

<f   >

c|d

Fig. 1. In equilibrium the average density of cooperators in the
nearest neighborhood of defectors must be 1 − r ≤ 〈

fc|d
〉 ≤ 1

and in the nearest neighborhood of cooperators 0 ≤ 〈
fc|c

〉 ≤
1−r (shaded area). If the total number of players in the lattice
is m, the lines k

〈
fc|c

〉
+ (m− k)

〈
fc|d

〉
= k depict the identity

of k cooperators in the lattice. Equilibrium is not possible, if
the fraction of cooperators Fc = k/m is such that the lines do
not pass through the shaded area.

density of cooperators as the nearest neighbors of defec-
tors, i.e.

〈
fc|d

〉
= 1

m−k

∑n
j=c+1 aj

j
n . Then we can write

equation (9) as

k = k
〈
fc|c

〉
+ (m − k)

〈
fc|d

〉
. (10)

The density fc|c of cooperators around each cooperator
is bounded: fc|c ≥ 0, fc|c ≤ c/n, and as c ≤ θ = n(1 −
r), the relation 0 ≤ 〈

fc|c
〉 ≤ 1 − r holds for the average

density. Similarly, the density of cooperators around each
defector fc|d can be at most 1 and is at least (1 − r),
and thus the average density 1 − r ≤ 〈

fc|d
〉 ≤ 1. Using

these relations together with equation (10) we obtain the
following limits for the density of cooperators Fc = k/m
in the whole agent population (see also Fig. 1):

1 − r

2 − r
≤ Fc ≤ 1

r + 1
. (11)

3.2 Local equilibrium configurations

In the above derivation we ignore how the strategies can
actually be distributed in the lattice. Hence, it is of inter-
est to examine possible local equilibrium configurations of
the player strategies. Again, equations (5–7) tell us how
many cooperative neighbors each defector or cooperator
can have in the equilibrium state. The number of coop-
erators around each agent depends on the value of the
temptation parameter r, and for a given value of r the
lattice has to be filled such that these conditions hold for
the neighborhood of each agent. In a lattice with periodic
boundary conditions, the lattice size m = LX × LY and
the neighborhood size n obviously have an effect on the
elementary configurations. Hence, we restrict ourselves to
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Fig. 2. Examples of elementary configuration blocks which can
be repeated without overlap to fill an infinite lattice, for various
values of r. The numbering refers to i in Table 2. A black cell
denotes a defector while an empty cell denotes a cooperator.
For a particular number the lower limit of density is obtained
by filling the lattice with the blocks on the left, and the upper
by using the blocks on the right.

infinite-sized lattices, filled by repeating elementary con-
figuration blocks, and look for the resulting limits on the
cooperator density Fc. Note that these conclusions also
hold for finite lattices with periodic boundary conditions,
if LX and LY are integer multiples of X and Y , respec-
tively, where X ×Y is the elementary block size. Here, we
will restrict the analysis to the case of the Moore neigh-
borhood with n = 8.

As an example, consider the local configurations when
r = 0.1, and hence the decision boundary value θ =
n(1 − r) = 7.2. Thus, from equations (5–7) one can infer
that in equilibrium all defectors should have more than
7.2 cooperators in their Moore neighborhoods. Because
the number of cooperating neighbors can take only integer
values, this means that every one of the n = 8 neighbors
of a defector should be a cooperator. On the other hand,
from equations (5–7) we see that the density fc|c of coop-
erators around each cooperator should be less than 1− r,
i.e. they should have at most c = 7 cooperators in their
Moore neighborhood. The smallest repeated elementary
block fulfilling both conditions is a 2 × 2-square with one
defector – when the lattice is filled with these blocks, the
cooperator density equals Fc = 3/4 (see Fig. 2, case 1, left
block). On the other hand, both requirements are likewise
fulfilled with a repeated 3 × 3-square, where the central
cell is a defector and the rest are cooperators, resulting in
the cooperator density of Fc = 8/9. This configuration is
illustrated in Figure 2, as case 1, right block.

By continuing the analysis of elementary configuration
blocks in similar fashion for different values of r, we ob-
tain lower and upper limits for the fraction of cooperators,
which are listed in Table 2. The corresponding elementary
configuration blocks are depicted in Figure 2. The table is
read so that when the value of the temptation parameter
is within the interval rl < r < ru, the number of coopera-
tors in each defector’s neighborhood Nc|d must be at least
9 − i and the number of cooperators in each cooperator’s

Table 2. Limits for the equilibrium fraction of cooperators
based on repeating elementary configuration blocks. When
rl < r < ru, the number of cooperators in each defector’s
neighborhood Nc|d must be at least 9 − i and the number of
cooperators in each cooperator’s neighborhood Nc|c at most
8−i. Considering possible repeating configuration blocks which
fulfill these conditions, we obtain lower limits Fc,L and upper
limits Fc,U for the density of cooperators.

i rl ru Nc|d ≥ Nc|c ≤ Fc,L Fc,U

1 0 1/8 8 7 3/4 8/9

2 1/8 2/8 7 6 2/3 4/5

3 2/8 3/8 6 5 1/2 2/3

4 3/8 4/8 5 4 1/2 2/3

5 4/8 5/8 4 3 4/9 1/2

6 5/8 6/8 3 2 1/3 1/2

7 6/8 7/8 2 1 2/9 1/3

8 7/8 8/8 1 0 1/9 1/4

neighborhood Nc|c can be at most 8−i. Here rl = (i−1)/8,
ru = i/8 and i = 1, . . . , 8 These conditions are those of
equations (5–7) and they are fulfilled by the configuration
blocks depicted in Figure 2, for which the minimum and
maximum densities of cooperators are Fc,L and Fc,U .

4 Simulation results

We have studied the above described spatial snowdrift
model with discrete time-step simulations on a m =
100 × 100-lattice with periodic boundary conditions. We
have specifically analyzed the behavior of the cooperator
density Fc, and equilibrium lattice configurations. In the
simulations, the lattice is initialized randomly so that each
cell contains a cooperator or defector with equal prob-
ability. However, biasing the initial densities toward co-
operators or defectors was found to have no considerable
effect on the outcome of the game. We have simulated
the game using both the Moore and the von Neumann
neighborhoods with n = 8 and n = 4 nearest neighbors,
respectively. In the simulations we update strategies of
the agents asynchronously [26] with the random sequen-
tial update scheme, so that during one simulation round,
every agent’s strategies are updated in random order. In
the following, the time scale is defined in terms of these
simulation rounds.

First, we have studied the development of the coop-
erator density Fc as a function of time. As expected, the
probability p of discontent agents changing their strategies
plays the role of defining the convergence time scale only2,

2 The role of p would be more important if synchronous up-
date rules were used. In that case p = 1 corresponds to a
situation where each discontent agent simultaneously changes
its strategy to the opposite. This, then, could result in a frus-
trated situation with oscillating cooperator density. However,
small enough values of p should damp these oscillations, result-
ing in static equilibrium.
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Fig. 3. Dynamics of the fraction of cooperators Fc. The upper
curves that converge to Fc ∼ 0.7 are for r = 0.2, and the
lower curves that converge to Fc ∼ 0.3 are for r = 0.8. In
both cases the probability of being discontent is varied as p =
1, 0.1, 0.01, 0.001 from left to right, and the lattice size is m =
100 × 100.

as in the long run Fc converges to a stable value irrespec-
tive of p. This is depicted in Figure 3, which shows Fc as
function of time for several values of p and two different
values of the temptation r. In these runs, we have used the
Moore neighborhood, i.e. n = 8. In all the studied cases,
Fc turns out to converge quite rapidly to a constant value,
Fc ∼ 0.7 for r = 0.2 and Fc ∼ 0.3 for r = 0.8.

It should be noted that Fc does not have to converge
to exactly the same stable value for the same r; even if
the game is considered to be in equilibrium, there can be
some variance in Fc, which is also visible in Figure 3. How-
ever, the value of Fc was found to eventually remain stable
during individual runs, i.e. no oscillations were detected.

Next, we have studied the average equilibrium fraction
of cooperators 〈Fc〉 in the agent population as function of
the temptation parameter r. We let the simulations run
for 500 rounds (with p = 0.1), and averaged the fraction
of cooperators for the subsequent 500 rounds. In all cases,
the fraction had already converged before the averaging
rounds. Figure 4 shows the results for the von Neumann
neighborhood (n = 4), illustrated as the squares. The
dotted lines indicate the upper and lower limits of equa-
tion (11), and the dashed diagonal line is Fc = 1 − r,
corresponding to the fraction of cooperators in the fully
mixed case [4,12,19]. The fraction of cooperators 〈Fc〉 is
seen to follow a stepped curve, with steps corresponding
to r = i/n, where i = 0, . . . , n. This is a natural conse-
quence of equations (5–7), where the decision boundary
θ = n(1 − r) can take only discrete values. A similar pic-
ture is given for the Moore neighborhood (n = 8) in the
middle panel of Figure 5. Furthermore, in the middle panel
of Figure 5 the values of Fc fall between the limits given
in Table 2 for all r as shown with solid lines.

In both cases (i.e. with Moore and von Neumann
neighborhoods) cooperation is seen to persist during the
whole range r = [0, 1]. This result differs largely from the
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Temptation r
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Fig. 4. Average fraction of cooperators 〈Fc〉 versus the temp-
tation r (squares), simulated on a 100×100 lattice with p = 0.1
using the von Neumann neighborhood. The values for 〈Fc〉 are
averages over 500 simulation rounds, where the averaging was
started after 500 initial rounds to guarantee convergence. The
dotted lines depict the upper and lower limits for Fc of equa-
tion (11). The dashed diagonal line is 1 − r.

Fc(r)-curves of the spatial snowdrift game with replicator
dynamics [12], where the fraction of cooperators vanished
at some critical rc. Hence, we argue that no conclusions
on the effect of spatiality on the snowdrift game can be
drawn without taking into consideration the strategy evo-
lution mechanism; local decision-making in a restricted
neighborhood yields results which are different from those
resulting from the evolutionary replicator dynamics.

We have also studied the equilibrium lattice configu-
rations for various values of r. Figure 5 depicts the central
part of the 100× 100-lattice after 1000 simulation rounds
using the Moore neighborhood and p = 0.1, with white
pixels corresponding to cooperators and black pixels to
defectors. The values of r have been selected so that the
equilibrium situation corresponds to each plateau of 〈Fc〉
illustrated in the central panel.

The observed configurations are rather polymorphic,
and repeating elementary patterns like those in Figure 2
are not seen. This reflects the fact that the local equilib-
rium conditions can be satisfied by various configurations;
the random initial configuration and the asynchronous up-
date then lead to irregular-looking equilibrium patterns,
which vary between simulation runs. The patterns seem
to be most irregular when r is around 0.5; this is because
then the equilibrium numbers of cooperators and defec-
tors are close to each other, and the ways to assign strate-
gies within local neighborhoods are most numerous. To be
more exact, there are

(
8
i

)
ways to distribute i cooperators

in the 8-neighborhood, and if e.g. 3/8 < r < 4/8, i is at
least 4 and at most 5, maximizing the value of the bino-
mial coefficient. Hence, the ways of filling the lattice with
these neighborhoods in such a way that the equilibrium
conditions are satisfied everywhere are most numerous as
well.
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Fig. 5. Example equilibrium configurations of defectors and cooperators on a m = 100 × 100 lattice for various values of r
when the Moore neighborhood is used. The configurations were recorded after T = 1000 simulation rounds. Only the middle
part of the lattice is shown for the sake of clarity. The middle panel depicts the average fraction of cooperators 〈Fc〉 in the
whole population as a function of the temptation r (squares), together with the upper and lower limits of equation (11) (dotted
lines) and the limits of Table 2 (solid lines). The values of 〈Fc〉 are averages over the last 500 simulation rounds and the dashed
diagonal line is Fc = 1 − r, corresponding to the fraction of cooperators in the fully mixed case [4,12,19].

5 Summary and conclusions

We have presented a variant of the two-dimensional snow-
drift game, where the strategy evolution is determined by
agent decisions based on the strategies of other players
within its local neighborhood. We have analyzed the lower
and upper bounds for equilibrium cooperator densities
with a mean-field approach as well as considering possi-
ble lattice-filling elementary configuration blocks. We have
also shown with simulations that this game converges to
equilibrium configurations with constant cooperator den-
sity depending on the payoff parameters, and that these
densities fall within the derived limits. Furthermore, the
strategy configurations in the equilibrium state display in-
teresting patterns, especially for intermediate temptation
parameter values.

Most interestingly, the equilibrium cooperator den-
sities differ largely from those resulting from applying

the replicator dynamics [12]. With our strategy evolution
rules, cooperation persists through the whole temptation
parameter range. This illustrates that one cannot draw
general conclusions on the effect of spatiality on the snow-
drift game without taking the strategy evolution mecha-
nisms into consideration – this should, in principle, ap-
ply for other spatial games as well. Care should especially
be taken when interpreting the results of investigations
on such games: the utilized strategy evolution mechanism
should reflect the system under study. We argue that es-
pecially when modeling social or economic systems, there
is no a priori reason to assume that generalized conclu-
sions can be drawn based on results using the evolution
inspired replicator dynamics approach, where high-payoff
strategies get copied and “breed” in proportion to their fit-
ness. As we have shown here, local decision-making with
limited information (neighbor strategies are known payoffs
are not) can result in different outcome.
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